Основные технические параметры
| проект | характеристика | |
| диапазон рабочих температур | -55~+105℃ | |
| Номинальное рабочее напряжение | 6,3-100 В | |
| диапазон мощности | 180~18000 мкФ 120 Гц 20℃ | |
| Допуск по емкости | ±20% (120 Гц 20℃) | |
| тангенс угла потерь | 120 Гц на 20℃ ниже значения, указанного в списке стандартных изделий | |
| Ток утечки※ | Заряжайте в течение 2 минут при номинальном напряжении ниже значения, указанного в списке стандартных изделий, при температуре 20°C. | |
| Эквивалентное последовательное сопротивление (ESR) | 100 кГц на 20°C ниже значения, указанного в списке стандартных изделий | |
|
Долговечность | Изделие должно соответствовать требованиям подачи номинального рабочего напряжения в течение 2000 часов при температуре 105 °C и размещения его при температуре 20 °C в течение 16 часов. | |
| Скорость изменения емкости | ±20% от начального значения | |
| Эквивалентное последовательное сопротивление (ESR) | ≤200% от начального значения спецификации | |
| тангенс угла потерь | ≤200% от начального значения спецификации | |
| ток утечки | ≤Начальное значение спецификации | |
|
Высокая температура и влажность | Продукт должен соответствовать | |
| Скорость изменения емкости | ±20% от начального значения | |
| Эквивалентное последовательное сопротивление (ESR) | ≤200% от начального значения спецификации | |
| тангенс угла потерь | ≤200% от начального значения спецификации | |
| ток утечки | ≤Начальное значение спецификации | |
Габаритный чертеж изделия
Размеры продукта (единица измерения: мм)
| Д (±0,5) | 16 | 18 |
| д (±0,05) | 0,8 | 0,8 |
| Ф (±0,5) | 7.5 | 7.5 |
| a | 1 | |
Коэффициент коррекции частоты пульсирующего тока
| Частота (Гц) | 120 Гц | 1 кГц | 10 кГц | 100 кГц | 500 кГц |
| поправочный коэффициент | 0,05 | 0,3 | 0,7 | 1 | 1 |
Твердотельные алюминиевые электролитические конденсаторы с проводящим полимером: передовые компоненты для современной электроники
Твердотельные алюминиевые электролитические конденсаторы с проводящим полимером представляют собой значительный шаг вперёд в технологии конденсаторов, предлагая превосходную производительность, надёжность и долговечность по сравнению с традиционными электролитическими конденсаторами. В этой статье мы рассмотрим особенности, преимущества и области применения этих инновационных компонентов.
Функции
Твердотельные алюминиевые электролитические конденсаторы с проводящим полимером сочетают в себе преимущества традиционных алюминиевых электролитических конденсаторов с улучшенными характеристиками проводящих полимерных материалов. Электролит в этих конденсаторах представляет собой проводящий полимер, который заменяет традиционный жидкий или гелевый электролит, используемый в обычных алюминиевых электролитических конденсаторах.
Одной из ключевых особенностей твердотельных алюминиевых электролитических конденсаторов с проводящим полимером является их низкое эквивалентное последовательное сопротивление (ESR) и способность выдерживать высокие пульсации тока. Это приводит к повышению эффективности, снижению потерь мощности и повышению надежности, особенно в высокочастотных приложениях.
Кроме того, эти конденсаторы обеспечивают превосходную стабильность в широком диапазоне температур и имеют более длительный срок службы по сравнению с традиционными электролитическими конденсаторами. Их прочная конструкция исключает риск утечки или высыхания электролита, обеспечивая стабильную работу даже в суровых условиях эксплуатации.
Преимущества
Использование проводящих полимерных материалов в твердотельных алюминиевых электролитических конденсаторах обеспечивает ряд преимуществ для электронных систем. Во-первых, их низкое эквивалентное последовательное сопротивление (ESR) и высокий уровень пульсаций тока делают их идеальными для использования в блоках питания, регуляторах напряжения и DC/DC-преобразователях, где они способствуют стабилизации выходного напряжения и повышению эффективности.
Во-вторых, твердотельные алюминиевые электролитические конденсаторы с проводящим полимером обладают повышенной надежностью и долговечностью, что делает их пригодными для критически важных применений в таких отраслях, как автомобилестроение, аэрокосмическая промышленность, телекоммуникации и промышленная автоматизация. Их способность выдерживать высокие температуры, вибрации и электрические напряжения обеспечивает длительную работу и снижает риск преждевременного выхода из строя.
Кроме того, эти конденсаторы обладают низким импедансом, что способствует улучшению фильтрации помех и повышению целостности сигнала в электронных схемах. Это делает их ценными компонентами аудиоусилителей, аудиооборудования и высококачественных аудиосистем.
Приложения
Твердотельные алюминиевые электролитические конденсаторы с проводящим полимером находят применение в широком спектре электронных систем и устройств. Они широко используются в источниках питания, регуляторах напряжения, электроприводах, светодиодном освещении, телекоммуникационном оборудовании и автомобильной электронике.
В блоках питания эти конденсаторы помогают стабилизировать выходное напряжение, снижать пульсации и улучшать переходные характеристики, обеспечивая надёжную и эффективную работу. В автомобильной электронике они способствуют повышению производительности и долговечности бортовых систем, таких как блоки управления двигателем (ЭБУ), информационно-развлекательные системы и системы безопасности.
Заключение
Твердотельные алюминиевые электролитические конденсаторы с проводящим полимером представляют собой значительный шаг вперед в технологии конденсаторов, обеспечивая превосходную производительность, надежность и долговечность для современных электронных систем. Благодаря низкому эквивалентному последовательному сопротивлению (ESR), высокой способности выдерживать пульсации тока и повышенной прочности они отлично подходят для широкого спектра применений в различных отраслях промышленности.
По мере развития электронных устройств и систем ожидается рост спроса на высокопроизводительные конденсаторы, такие как твердотельные алюминиевые электролитические конденсаторы с проводящим полимером. Их способность соответствовать строгим требованиям современной электроники делает их незаменимыми компонентами в современных электронных устройствах, способствуя повышению эффективности, надежности и производительности.
| Код продукта | Температура (℃) | Номинальное напряжение (В постоянного тока) | Емкость (мкФ) | Диаметр (мм) | Высота(мм) | Ток утечки (мкА) | ESR/Импеданс [Оммакс] | Жизнь (часов) | Сертификация продукции |
| NPGI1600J103MJTM | -55~105 | 6.3 | 10000 | 16 | 16 | 7500 | 0,007 | 2000 | - |
| NPGI1800J123MJTM | -55~105 | 6.3 | 12000 | 16 | 18 | 7500 | 0,007 | 2000 | - |
| NPGI2000J153MJTM | -55~105 | 6.3 | 15000 | 16 | 20 | 7500 | 0,007 | 2000 | - |
| NPGJ1800J153MJTM | -55~105 | 6.3 | 15000 | 18 | 18 | 7500 | 0,007 | 2000 | - |
| NPGJ2000J183MJTM | -55~105 | 6.3 | 18000 | 18 | 20 | 7500 | 0,007 | 2000 | - |
| NPGI1601A682MJTM | -55~105 | 10 | 6800 | 16 | 16 | 7500 | 0,008 | 2000 | - |
| NPGI1801A822MJTM | -55~105 | 10 | 8200 | 16 | 18 | 7500 | 0,008 | 2000 | - |
| NPGI2001A103MJTM | -55~105 | 10 | 10000 | 16 | 20 | 7500 | 0,008 | 2000 | - |
| NPGJ1801A103MJTM | -55~105 | 10 | 10000 | 18 | 18 | 7500 | 0,008 | 2000 | - |
| NPGJ2001A123MJTM | -55~105 | 10 | 12000 | 18 | 20 | 7500 | 0,008 | 2000 | - |
| NPGI1601C392MJTM | -55~105 | 16 | 3900 | 16 | 16 | 7500 | 0,008 | 2000 | - |
| NPGI1801C472MJTM | -55~105 | 16 | 4700 | 16 | 18 | 7500 | 0,008 | 2000 | - |
| NPGI2001C562MJTM | -55~105 | 16 | 5600 | 16 | 20 | 7500 | 0,008 | 2000 | - |
| NPGJ1801C682MJTM | -55~105 | 16 | 6800 | 18 | 18 | 7500 | 0,008 | 2000 | - |
| NPGJ2001C822MJTM | -55~105 | 16 | 8200 | 18 | 20 | 7500 | 0,008 | 2000 | - |
| NPGI1601E222MJTM | -55~105 | 25 | 2200 | 16 | 16 | 7500 | 0,016 | 2000 | - |
| NPGI1801E272MJTM | -55~105 | 25 | 2700 | 16 | 18 | 7500 | 0,016 | 2000 | - |
| NPGI2001E332MJTM | -55~105 | 25 | 3300 | 16 | 20 | 7500 | 0,016 | 2000 | - |
| NPGJ1801E392MJTM | -55~105 | 25 | 3900 | 18 | 18 | 7500 | 0,016 | 2000 | - |
| NPGJ2001E472MJTM | -55~105 | 25 | 4700 | 18 | 20 | 7500 | 0,016 | 2000 | - |
| NPGI1601V182MJTM | -55~105 | 35 | 1800 | 16 | 16 | 7500 | 0,02 | 2000 | - |
| NPGI1801V222MJTM | -55~105 | 35 | 2200 | 16 | 18 | 7500 | 0,02 | 2000 | - |
| NPGI2001V272MJTM | -55~105 | 35 | 2700 | 16 | 20 | 7500 | 0,02 | 2000 | - |
| NPGJ1801V272MJTM | -55~105 | 35 | 2700 | 18 | 18 | 7500 | 0,02 | 2000 | - |
| NPGJ2001V332MJTM | -55~105 | 35 | 3300 | 18 | 20 | 7500 | 0,02 | 2000 | - |
| NPGI1601H681MJTM | -55~105 | 50 | 680 | 16 | 16 | 6800 | 0,03 | 2000 | - |
| NPGI1801H821MJTM | -55~105 | 50 | 820 | 16 | 18 | 7500 | 0,03 | 2000 | - |
| NPGI2001H102MJTM | -55~105 | 50 | 1000 | 16 | 20 | 7500 | 0,03 | 2000 | - |
| NPGJ1801H122MJTM | -55~105 | 50 | 1200 | 18 | 18 | 7500 | 0,03 | 2000 | - |
| NPGJ2001H152MJTM | -55~105 | 50 | 1500 | 18 | 20 | 7500 | 0,03 | 2000 | - |
| NPGI1601J561MJTM | -55~105 | 63 | 560 | 16 | 16 | 7056 | 0,03 | 2000 | - |
| NPGI1801J681MJTM | -55~105 | 63 | 680 | 16 | 18 | 7500 | 0,03 | 2000 | - |
| NPGI2001J821MJTM | -55~105 | 63 | 820 | 16 | 20 | 7500 | 0,03 | 2000 | - |
| NPGJ1801J821MJTM | -55~105 | 63 | 820 | 18 | 18 | 7500 | 0,03 | 2000 | - |
| NPGJ2001J102MJTM | -55~105 | 63 | 1000 | 18 | 20 | 7500 | 0,03 | 2000 | - |
| NPGI1601K331MJTM | -55~105 | 80 | 330 | 16 | 16 | 5280 | 0,03 | 2000 | - |
| NPGI1801K391MJTM | -55~105 | 80 | 390 | 16 | 18 | 6240 | 0,03 | 2000 | - |
| NPGI2001K471MJTM | -55~105 | 80 | 470 | 16 | 20 | 7500 | 0,03 | 2000 | - |
| NPGJ1801K561MJTM | -55~105 | 80 | 560 | 18 | 18 | 7500 | 0,03 | 2000 | - |
| NPGJ2001K681MJTM | -55~105 | 80 | 680 | 18 | 20 | 7500 | 0,03 | 2000 | - |
| NPGI1602A181MJTM | -55~105 | 100 | 180 | 16 | 16 | 3600 | 0,04 | 2000 | - |
| NPGI1802A221MJTM | -55~105 | 100 | 220 | 16 | 18 | 4400 | 0,04 | 2000 | - |
| NPGI2002A271MJTM | -55~105 | 100 | 270 | 16 | 20 | 5400 | 0,04 | 2000 | - |
| NPGJ1802A271MJTM | -55~105 | 100 | 270 | 18 | 18 | 5400 | 0,04 | 2000 | - |
| NPGJ2002A331MJTM | -55~105 | 100 | 330 | 18 | 20 | 6600 | 0,04 | 2000 | - |







