Основные технические параметры
проект | характеристика | |
диапазон рабочих температур | -55~+105℃ | |
Номинальное рабочее напряжение | 6.3-100В | |
диапазон мощности | 180~18000 мкФ 120 Гц 20℃ | |
Допуск по емкости | ±20% (120 Гц 20℃) | |
тангенс угла потерь | 120 Гц на 20℃ ниже значения в списке стандартных изделий | |
Ток утечки※ | Заряжайте в течение 2 минут при номинальном напряжении ниже значения, указанного в списке стандартных изделий, при температуре 20°C. | |
Эквивалентное последовательное сопротивление (ESR) | 100 кГц на 20°C ниже значения в перечне стандартных изделий | |
Прочность | Изделие должно выдерживать температуру 105 ℃, подавать номинальное рабочее напряжение в течение 2000 часов и через 16 часов при 20 ℃, | |
Скорость изменения емкости | ±20% от начального значения | |
Эквивалентное последовательное сопротивление (ESR) | ≤200% от начального значения спецификации | |
тангенс угла потерь | ≤200% от начального значения спецификации | |
ток утечки | ≤ Начальное значение спецификации | |
Высокая температура и влажность | Изделие должно соответствовать условиям температуры 60°C и относительной влажности 90%~95% без подачи напряжения, поместить его на 1000 часов и поместить его при температуре 20°C на 16 часов. | |
Скорость изменения емкости | ±20% от начального значения | |
Эквивалентное последовательное сопротивление (ESR) | ≤200% от начального значения спецификации | |
тангенс угла потерь | ≤200% от начального значения спецификации | |
ток утечки | ≤ Начальное значение спецификации |
Габаритный чертеж продукта
Размеры продукта (единица измерения: мм)
ФД | B | C | A | H | E | K | a |
16 | 17 | 17 | 5.5 | 1,20±0,30 | 6.7 | 0,70±0,30 | ±1,0 |
18 | 19 | 19 | 6.7 | 1,20±0,30 | 6.7 | 0,70±0,30 |
Коэффициент коррекции частоты пульсирующего тока
коэффициент коррекции частоты
Частота (Гц) | 120 Гц | 1кГц | 10кГц | 100кГц | 500кГц |
поправочный коэффициент | 0,05 | 0.3 | 0,7 | 1 | 1 |
Твердые алюминиевые электролитические конденсаторы с проводящим полимером: передовые компоненты для современной электроники
Конденсаторы из твердого алюминиевого электролитического проводящего полимера представляют собой значительный шаг вперед в технологии конденсаторов, предлагая превосходную производительность, надежность и долговечность по сравнению с традиционными электролитическими конденсаторами. В этой статье мы рассмотрим особенности, преимущества и области применения этих инновационных компонентов.
Функции
Конденсаторы из твердого алюминиевого электролитического проводящего полимера сочетают в себе преимущества традиционных алюминиевых электролитических конденсаторов с улучшенными характеристиками проводящих полимерных материалов. Электролитом в этих конденсаторах является проводящий полимер, который заменяет традиционный жидкий или гелевый электролит, используемый в обычных алюминиевых электролитических конденсаторах.
Одной из ключевых особенностей электролитических конденсаторов из твердого алюминиевого электролита с полимерным проводником является их низкое эквивалентное последовательное сопротивление (ESR) и способность выдерживать высокие пульсирующие токи. Это приводит к повышению эффективности, снижению потерь мощности и повышению надежности, особенно в высокочастотных приложениях.
Кроме того, эти конденсаторы обеспечивают превосходную стабильность в широком диапазоне температур и имеют более длительный срок службы по сравнению с традиционными электролитическими конденсаторами. Их прочная конструкция исключает риск утечки или высыхания электролита, обеспечивая стабильную производительность даже в суровых условиях эксплуатации.
Преимущества
Использование проводящих полимерных материалов в твердотельных алюминиевых электролитических конденсаторах дает несколько преимуществ электронным системам. Во-первых, их низкий ESR и высокие показатели пульсирующего тока делают их идеальными для использования в блоках питания, регуляторах напряжения и DC-DC-преобразователях, где они помогают стабилизировать выходное напряжение и повысить эффективность.
Во-вторых, электролитические конденсаторы с твердотельным алюминиевым электролитом на основе проводящего полимера обеспечивают повышенную надежность и долговечность, что делает их пригодными для критически важных приложений в таких отраслях, как автомобилестроение, аэрокосмическая промышленность, телекоммуникации и промышленная автоматизация. Их способность выдерживать высокие температуры, вибрации и электрические напряжения обеспечивает долгосрочную работу и снижает риск преждевременного выхода из строя.
Кроме того, эти конденсаторы демонстрируют низкоомные характеристики, которые способствуют улучшению фильтрации шума и целостности сигнала в электронных цепях. Это делает их ценными компонентами в аудиоусилителях, аудиооборудовании и высококачественных аудиосистемах.
Приложения
Конденсаторы из твердого алюминиевого электролитического проводящего полимера находят применение в широком спектре электронных систем и устройств. Они обычно используются в блоках питания, регуляторах напряжения, приводах двигателей, светодиодном освещении, телекоммуникационном оборудовании и автомобильной электронике.
В блоках питания эти конденсаторы помогают стабилизировать выходное напряжение, уменьшить пульсацию и улучшить переходный процесс, обеспечивая надежную и эффективную работу. В автомобильной электронике они способствуют производительности и долговечности бортовых систем, таких как блоки управления двигателем (ЭБУ), информационно-развлекательные системы и функции безопасности.
Заключение
Конденсаторы из твердого алюминиевого электролитического проводящего полимера представляют собой значительный шаг вперед в технологии конденсаторов, предлагая превосходную производительность, надежность и долговечность для современных электронных систем. Благодаря низкому ESR, высокой способности выдерживать пульсирующий ток и повышенной прочности они хорошо подходят для широкого спектра применений в различных отраслях промышленности.
Поскольку электронные устройства и системы продолжают развиваться, ожидается, что спрос на высокопроизводительные конденсаторы, такие как электролитические конденсаторы с твердотельным электролитом из проводящего полимера, будет расти. Их способность соответствовать строгим требованиям современной электроники делает их незаменимыми компонентами в современных электронных конструкциях, способствуя повышению эффективности, надежности и производительности.
Код продукта | Температура(℃) | Номинальное напряжение (В пост. тока) | Емкость (мкФ) | Диаметр (мм) | Высота(мм) | Ток утечки (мкА) | ESR/Импеданс [Оммакс] | Жизнь (часов) | Сертификация продукции |
VPGJ1951H122MVTM | -55~105 | 50 | 1200 | 18 | 19.5 | 7500 | 0,03 | 2000 | - |
VPGJ2151H152MVTM | -55~105 | 50 | 1500 | 18 | 21.5 | 7500 | 0,03 | 2000 | - |
VPGI1751J561MVTM | -55~105 | 63 | 560 | 16 | 17.5 | 7056 | 0,03 | 2000 | - |
VPGI1951J681MVTM | -55~105 | 63 | 680 | 16 | 19.5 | 7500 | 0,03 | 2000 | - |
VPGI2151J821MVTM | -55~105 | 63 | 820 | 16 | 21.5 | 7500 | 0,03 | 2000 | - |
VPGJ1951J821MVTM | -55~105 | 63 | 820 | 18 | 19.5 | 7500 | 0,03 | 2000 | - |
VPGJ2151J102MVTM | -55~105 | 63 | 1000 | 18 | 21.5 | 7500 | 0,03 | 2000 | - |
VPGI1751K331MVTM | -55~105 | 80 | 330 | 16 | 17.5 | 5280 | 0,03 | 2000 | - |
VPGI1951K391MVTM | -55~105 | 80 | 390 | 16 | 19.5 | 6240 | 0,03 | 2000 | - |
VPGI2151K471MVTM | -55~105 | 80 | 470 | 16 | 21.5 | 7500 | 0,03 | 2000 | - |
VPGJ1951K561MVTM | -55~105 | 80 | 560 | 18 | 19.5 | 7500 | 0,03 | 2000 | - |
VPGJ2151K681MVTM | -55~105 | 80 | 680 | 18 | 21.5 | 7500 | 0,03 | 2000 | - |
VPGI1752A181MVTM | -55~105 | 100 | 180 | 16 | 17.5 | 3600 | 0,04 | 2000 | - |
VPGI1952A221MVTM | -55~105 | 100 | 220 | 16 | 19.5 | 4400 | 0,04 | 2000 | - |
VPGI2152A271MVTM | -55~105 | 100 | 270 | 16 | 21.5 | 5400 | 0,04 | 2000 | - |
VPGJ1952A271MVTM | -55~105 | 100 | 270 | 18 | 19.5 | 5400 | 0,04 | 2000 | - |
VPGJ2152A331MVTM | -55~105 | 100 | 330 | 18 | 21.5 | 6600 | 0,04 | 2000 | - |
VPGI1750J103MVTM | -55~105 | 6.3 | 10000 | 16 | 17.5 | 7500 | 0,007 | 2000 | - |
VPGI1950J123MVTM | -55~105 | 6.3 | 12000 | 16 | 19.5 | 7500 | 0,007 | 2000 | - |
VPGI2150J153MVTM | -55~105 | 6.3 | 15000 | 16 | 21.5 | 7500 | 0,007 | 2000 | - |
VPGJ1950J153MVTM | -55~105 | 6.3 | 15000 | 18 | 19.5 | 7500 | 0,007 | 2000 | - |
VPGJ2150J183MVTM | -55~105 | 6.3 | 18000 | 18 | 21.5 | 7500 | 0,007 | 2000 | - |
VPGI1751A682MVTM | -55~105 | 10 | 6800 | 16 | 17.5 | 7500 | 0,008 | 2000 | - |
VPGI1951A822MVTM | -55~105 | 10 | 8200 | 16 | 19.5 | 7500 | 0,008 | 2000 | - |
VPGI2151A103MVTM | -55~105 | 10 | 10000 | 16 | 21.5 | 7500 | 0,008 | 2000 | - |
VPGJ1951A103MVTM | -55~105 | 10 | 10000 | 18 | 19.5 | 7500 | 0,008 | 2000 | - |
VPGJ2151A123MVTM | -55~105 | 10 | 12000 | 18 | 21.5 | 7500 | 0,008 | 2000 | - |
VPGI1751C392MVTM | -55~105 | 16 | 3900 | 16 | 17.5 | 7500 | 0,008 | 2000 | - |
VPGI1951C472MVTM | -55~105 | 16 | 4700 | 16 | 19.5 | 7500 | 0,008 | 2000 | - |
VPGI2151C562MVTM | -55~105 | 16 | 5600 | 16 | 21.5 | 7500 | 0,008 | 2000 | - |
VPGJ1951C682MVTM | -55~105 | 16 | 6800 | 18 | 19.5 | 7500 | 0,008 | 2000 | - |
VPGJ2151C822MVTM | -55~105 | 16 | 8200 | 18 | 21.5 | 7500 | 0,008 | 2000 | - |
VPGI1751E222MVTM | -55~105 | 25 | 2200 | 16 | 17.5 | 7500 | 0,016 | 2000 | - |
VPGI1951E272MVTM | -55~105 | 25 | 2700 | 16 | 19.5 | 7500 | 0,016 | 2000 | - |
VPGI2151E332MVTM | -55~105 | 25 | 3300 | 16 | 21.5 | 7500 | 0,016 | 2000 | - |
VPGJ1951E392MVTM | -55~105 | 25 | 3900 | 18 | 19.5 | 7500 | 0,016 | 2000 | - |
VPGJ2151E472MVTM | -55~105 | 25 | 4700 | 18 | 21.5 | 7500 | 0,016 | 2000 | - |
VPGI1751V182MVTM | -55~105 | 35 | 1800 | 16 | 17.5 | 7500 | 0,02 | 2000 | - |
VPGI1951V222MVTM | -55~105 | 35 | 2200 | 16 | 19.5 | 7500 | 0,02 | 2000 | - |
VPGI2151V272MVTM | -55~105 | 35 | 2700 | 16 | 21.5 | 7500 | 0,02 | 2000 | - |
VPGJ1951V272MVTM | -55~105 | 35 | 2700 | 18 | 19.5 | 7500 | 0,02 | 2000 | - |
VPGJ2151V332MVTM | -55~105 | 35 | 3300 | 18 | 21.5 | 7500 | 0,02 | 2000 | - |
VPGI1751H681MVTM | -55~105 | 50 | 680 | 16 | 17.5 | 6800 | 0,03 | 2000 | - |
VPGI1951H821MVTM | -55~105 | 50 | 820 | 16 | 19.5 | 7500 | 0,03 | 2000 | - |
VPGI2151H102MVTM | -55~105 | 50 | 1000 | 16 | 21.5 | 7500 | 0,03 | 2000 | - |